ISR S §

"

—~—

Pad
N93-1940l
Full design of fuzzy controllers using genetic algorithms

T Abdollh Homaifar /3 7306

Ed McCormick

NASA Center of Research Excellence / Controls and Guidance Group
North Carolina A&T State University, Dept. of Electrical Engineering -
McNair Building, Greensboro, North Carolina 27411

ABSTRACT

This paper examines the applicability of genetic algorithms in the complete design of fuzzy logic controllers. While
GA has been used before in the development of rule sets or high performance membership functions, the interdependence
between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating
complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design
loop. We show the application of this new method to the development of a cart controller.

LINTRODU N

Genetic algorithms (GA) are powerful search procedures based on the mechanics of natural selection, They use
opmtionsfoundinnanuﬂgweﬁcstognidetbemmmughmepamsinthzmhspace. They provide a means to search
poorly understood, irregular spaces. Because of its robustness, GA has been successfully applied to 8 variety of function
optimizations, self-adaptive control systems, and learning systems.

Fuzzy systems arose from the desire to describe complex systems with simple tools. In contrast to boolean systems
where an item either has a membership of {1} or (0} in a set, fuzzy systems allow for degrees of membership over the range

reason. Fuzzy controllers allow for a simpler, more human approach 10 control design and do not demand the mathematical
modelling knowledge of more conventional control design methods. As systems become more complex, the ability to describe
them mathematically becomes more difficult. For this reason, fuzzy controllers provide reasonable, effective alternatives t0
classical or state-space controllers.

Byusingalinguisticnppmach.itiseasytoseethalﬁzzyﬂworyclnbeintegmedimoeonmltheoryusingmlcs
of the form IF {condition) THEN{action}. Using these rules, one can create a functional controller. The problem with this
method comes from determining the appropriate rules and determining the shape of the membership functions.

This work sought to use genetic algorithms in the design and implementation of fuzzy logic controllers. Previously,
generation of membership functions had been a task mainly done cither iteratively, by trial-and-error, or by human expett.
AmksucbasmiswasamnmlcandidatequAsmceGAwiﬂauunptwuwemunbmhipfuncﬁonsthatwillcausethe
controller to perform optimally. In much the same manner, GA could be used to generate the rules which use these
membership functions. Work had been done using GA to do each of these tasks separately, but since the two are co-
dependent, using a hand-designed rule set with GA designed membership functions or hand-designed membership functions
with a GA designed rule set does not use GA 10 its full advantage. Thus, the use of GA to determine both simultaneously
and determine an optimal or near-optimal controller was the main objective of this work.

The problem used to check the effectiveness of this method was centering and stopping a cart located on a one-
dimensional track as described by Thrift', Given an initial velocity and location on the track, the objective was to determine
a controller which will bring the cart to zero velocity and zero location in minimum time. Different controllers were designed
formispmblanbydividingthemp\nmdonqmspacuinmdiffawtpuﬁﬁmm

PRECEDING FAGE BLANK NOT FILMED



[..‘

Ew‘m‘ !

——

r'

|

=
-

_—

i

fn

e

e'noovr f

-t

i I:z:.:‘ ity rlww
f\

e
r

foundation in his book, Adaptation in Natural and Artificial Systems’. Holland developed GA to simulate some of the
processes observed in natural evolution. Evolution is a process that operates on chromosomes (organic devices for encoding
the structure of living beings) rather than on living beings. Natural selection links chromosomes with the performance of their
decoded structure. The processes of natural selection cause those chromosomes that encode successful structures to reproduce
more often than those that do not. Recombination processes create different chromosomes in children by combining material
from the chromosomes of the two parents. Mutation may cause the chromosomes of children to be different from those of
their parents.

GA appropriately incorporates these features of natural evolution in computer algorithms to solve difficult problems
inuwwgythatnatmehasdone-ﬂuoughevoluﬁon. GA:equiresthepmblemtobemaximiwd(amixﬁmiud)wbesmwd
in the form of a cost (objective) function. In GA, a set of variables for a given problem is encoded into a string (or other
coding structure), analogous to a chromosome in nature. These strings are converted to a numerical value and then linearly
mapped over the range allowed for the variable. This value is then used to evaluate the cost function, yielding a *fitness.”
GA selects parents from a pool of strings (population) according to the basic criteria of "survival of the fittest." It reproduces
new strings by recombining parts of the selected pareats in a random manner. Although GA is a stochastic method, it is not
a simple random walk. It exploits historical information to guide the search with improved performance.

The repopulation of the next generation is done using three methods: reproduction, crossover, and mutation.
Reproduction means simply that strings with high fitnesses should receive multiple copies in the next generation while the
strings with low fitnesses receive fewer copies or even none at all. Crossover refers to taking a fit string, splitting it into two
parts at a randomly generated crossover point and recombining it with another string which has also been split at the same
crossover point. This procedure serves to promote changes in the best strings which will give them even higher fitnesses.
Mautation is the random alteration of a bit in the string. This will assist in keeping diversity in the population.

In explaining the inner workings of GA, let us initially make a few definitions®. Since we are dealing with binary
strings, & notation must be developed to denote similarity subsets (schemata). A schema is a similarity subset which contains
strings that have similarities at some bit positions. We can expand this thinking even further with the introduction of a wild
card character, ®, in addition to the binary set {0,1}. For example, the set {0001,0101,0011) can be described by the
similarity template 0**1. Using this notation, we can now define a schema’s order and defining length. For a given schema,
h.itsordero(h)isdeﬁnedasthenmnbuofﬁxedbitposiﬁonswithinthaschana. The defining length of a schema, 8(h),
is the distance between the outermost defining positions of a schema. As an example, the schema 01*#**0 has order 3 and
defining length 5.

With these definitions we can now present the fundamental theorem of genetic algorithms, the schema theorem’. The
schema theorem enables us to calculate a lower bound on the expected number of a particular schema, h, following
reproduction, crossover, and mutation™. The theorem is stated as:

Ahi+1) 2 um&;’l[l Pt - p.o(h)] m

where A is the expected number of schemata, t is the generation index, 1is the overall string length, f(h) is the average fitness
of those strings representing the subset b, f is the average fitness of the entire population, p, and p,, are, respectively, the
crossover and mutation probabilities. Examining the schema theorem, we seg that it states that a schema will grow when it
is short, has low order, and has above average fitness.

Given a history of genetic algorithms, one might ask what advantages does it have over other methods. GA's
primary advantage over other methods is its robustness. GA works through function evaluation, not through differentiation
or other such means. Because of this trait, GA does not care what type of problem it is asked to maximize, only that it be
properly coded. Thus GA is able to solve a wide range of problems: linear, nonlinear, discontinuous, discrete, etc.

22 lle

meﬂwayum&mdnimbﬂiwm&suiumephydcﬂpbuwmmwimuexmmwmﬁwmm
dictated by more conventional, boolean models. Fuzziness describes event ambiguity. It measures the degree to which an
event occurs, not whether it occurs’. The fact that fuzziness is lacking in precision has led to its dismissal by some
rescarchers. Olhers.bowevu.seeﬁmymeoryuapowuf\dwolintheexpkxaﬁmofmplapoblansbemmcofits
ability to determine outputs for a given set of inputs without using a mathematical model. As Jain noted®, the basic motivation
ummmeuMMMcmﬁwmmw»mmmwmmstoapply



K
i

!ll
ik

[

m" F\m\ LA

il

W

£

e

¢

g

REA

m!

LI

am

Il! Mmm

om o

o

them had to make a choice between a complex system and a complex tool.

Fuzzy theory owes a great deal to human language. As explained by Leung’, daily languages cannot be precisely
characterized on either the syntactic or semantic level. When we speak of temperature in terms such as "hot” or "cold" instead
of in physical units such as degrees Fahrenheit or Celsius, we can see language becomes a fuzzy varisble whose spatial
denotation is imprecise. lnthissense.fuzzythea'ybeoomaemilyundetstoodbecmitcanbemadctomanbleahigh
level language instead of a mathematical language. Asan example, consider the fuzzy variable TEMPERATURE. The fuzzy
set describing TEMPERATURE can be categorized as five fuzzy-set values {very cold (VC), cold (C), medium (M), hot (H),
very hot(VH)). Figure 1 shows one possible set of the membership functions of the fuzzy-set values VC,C,M, H, and VH
for the range of TEMPERATURE 0°-130° F. Note that every value of temperature has 8 membership in every fuzzy-value

set although in most cases this membership is 0.

Memobasship
e 22 EE.EEEEC.
Na
/
/l

PR B e 8 R B 6 W

Figure 1 Fuzzy-Set Variables for the Fuzzy Variable
TEMPERATURE

Also, some values of TEMPERATURE overlap into two fuzzy-value sets. For example a temperature of 47° has membership
in both "cold” and "medium" although the membership in *medium" is larger than the membership in *cold.” This example
shows how membership functions play the role of discretizing the linguistic terminology to values a computer can use. of
course in most respects these membership functions are subjective in nature. What determines the ranges for these fuzzy-set
values or the shape of these membership functions? In most cases, membership functions are designed by experts with a
knowledge of the system being analyzed. However, human experts cannot be expected to provide optimal membership
functions for a given system. Oﬁen.uuefuncﬁonsmmodifndimﬁvdywhikuyingmobuhopdmﬁty.

How are these membership functions used in fuzzy controllers? In its simplest form a fuzzy logic controller is.
simplyasetofmlwduaibingasuofacﬁomwbetakcnforagivenmofinms. It is easiest to think of these rules as
if-then statements of the form /F(set of inputs) THEN{outputs}. For the example above, a fuzzy controller can be used for
a thermostat. One rule might be JF{very cold} THEN{tum furnace on for x minutes}. Another may be /F {hot} THEN{tum
air conditioner on for y minutes}. Since "very cold” applies to a range of temperatures which also may belong to another
fuzzy-set variable (ie. "cold”) which has rules of its own, the output which results from »defuzzification” of the application
of these rules must take into account how much each rule applics before determining how much output must be applied.
Usually a centroid method is used to account for the influence of each rule on the output.

2.3 Applicability of GA to Fuzzy Controllers

The application of genetic algorithms to fuzzy logic controllers holds a great deal of promise. Previous work has
been done mainly in two areas: learning the fuzzy rules used in a controller and leaming membership functions. These two
areasateﬂumostﬁmeconsmningoffuzzyconuoucrdesignandareformemostpmdanbytrial-and-enor. This
methodology is lacking in two main respects: itmaytakewommhﬁmewgetasaﬁsfactorynnesetorsaofmunbmhip

» funcﬁonsnndtbueislinlechmwethatthmsetswmbeqﬁmal. Gmedcdgaimmhasmelbﬂitywhnprovebothofm

shortcomings. GA’srobnMenabksiuobovaacomplexmhspaceinamhﬁvclydutperiodoftimewhileuxsun'ng
an optimal or near-optimal solution. Beameofmismbﬂity.GAiummlmhfuhuzycoan
Mﬁ'spapu‘euminedﬂwfeuibilityofmingGAloﬁndhmymlu. In this paper, fuzzy control synthesis was
done in decision table form. Theprobhtnexminedmcwtuingaanofmmmonamd’ma\dmaluxk. The
objecﬁveistomovethewtﬁunagiveniniﬁalpodﬂonmdvebdwwmpodﬁonmdvdodtyinnﬁnhmmtime. This
isdonethmughmeq)pliwiooohfauFﬁommeconuolbt. Falmmmwimmdomaﬁngpoinn.ﬂ\emze
numberofﬁmeucpsfordwhand-dedpedfuzzyconuoﬂetwhhgthemwwopodﬁonandvelodtyw164. In



l\ LN

Ew 1w
RV

I
i

I!if”"f 8

e

e

an

e

g

comparison, a GA designed controller using the same starting points had an average of 143 time steps. As Thrift noted, while
the GA based fuzzy rulel performed reasonably well, work could be done to further improve its perfarmance, such as letting
GA determine the endpoints of the membership functions.

Karr® examined using GA to find high-performance membership functions for a controlier for the a pole-cart system.
The task for the controller is as follows:

A wheeled cart has a rigid pole hinged to its top. The cart is free to move right or left along a straight
boundeduackmdtbepoleisﬁeelomov%widﬁnthevuﬁcalphnemﬂklwmemch The cart is to be
1cptwitlﬁn!heprec_leﬁnedlimitsofureu'ackandmepole should be prevented from falling beyond a
pmdeﬁnedverﬁcalanglebyapplyingaforceofﬁxedmagnimdetotheleftuﬁghtoﬂhebaseofthem

'Iheobjec:iveistobringﬂ\ecantorestatﬂncentcrofﬂlemckwiththepolebalumd,muchthesameasin'mift'spaper.
Also, he examined the use of micro-GA, a small population GA developed by Krishnakumar’, to determine an adaptive real-
time controller for the same problem where system parameters may be time varying. In determining the membership
functions, GA was used to determine the anchor points for each of the linguistic variables used. For the non-adaptive
problem, the GA designed fuzzy logic controller consistently outperformed the hand-designed controller. For the adaptive
controller, the performance was even better: the non-adaptive author designed controller always became unstable, while the
non-adaptive GA controller and the micro-GA designed adaptive controller were always able to complete the task. The
difference between the two GA designed controllers was in their convergence times; the micro-GA controller consistently
balanced the system faster than the non- ive GA controller.

Previous work done with optimizing fuzzy controllers has dealt with optimizing membership functions or rule sets.
For example, Mamdani and Procyk' iteratively designed membership functions, Thrift' used GA to design rule sets, and Karr
used GA to design membership functions''. These methodologies have a major limitation; how can an optimal design be
obtnimdwhenoneoftbetwonminomnponenisisdedgnedinanm-opﬁmﬂmethod Logically, to obtain an optimal rule
sctandsuofmembas!ﬁpfumﬁons,thetwomustbeduigned togetha'somelinksbetwemmancanbefunyexploiwd.
By using GA 1o design both simultaneously, the two elements of fuzzy controllers can be fully integrated to deliver a more
finely tuned, high performance controller.

. PROBLEM DES ON AND METHODOLOGY

3.1 Cant-Centering Problem

Aoommonproblemmedinlimnneisthecemeringofaanofmm,onaone-dimemionaluack. The input
variables for this problem are the cart’s location on the track, x, and the cart’s velocity, v. The objective was (o find a
controller which could provide a force F which would bringthecuttox-Oandv-O&omanarbimry initial condition (x4
and v,) in minimum time. The equations of motion for the cart are:

x(t + 1) = x() + TV

W+ 1) =vl) + t £Q
m

2

where 7 is the time step. mevuuesfmtheconslantsandmemngeofvaluwofdnvuiablaaregiveninTableI.
Three controllers were developed for the cart-centering problem. They will be referred to by the number of fuzzy
sets that partition the x-location, velocity, and output. For example, the controller which had the velocity divided into 5 fuzzy
sets.thex-loeaﬁondividedimosfuzzysets.andtheoutputdividedimoSﬁnzysuswasulledmeSSSconmua. While
GAmnﬂowedtodaamined:ebaﬂonofdnuianglebasesforuninp\nvriables,theouqmﬁmymlomﬁonswem
ﬁmmﬁﬂamtwwﬂmymmmmﬁmmmummuu.



o Table I Constants and Ranges for Cart Problem
Eﬁ(
Value
= 20 kg
- C - .02 sec
- -2t0+2 m
) -2 to +2 m/s
& -150 to +150 N
7_7_(
= 1 u
| u "
! E 1 i:
l [ V] lu
== “ “
= u u
g ™% i b ) " R (1)
= Output Output
4 Figure 2 Output Divided Into 3 Fuzzy Sets Figure 3 Output Divided Into § Fuzzy Sets
. s
% | 7]
= 13
= 1
= ¢ u
g -
- - “
& L e e e i 1
§ Outyut
£= Figure 4 Output Divided Into 7 Fuzzy Sets
-
28 ificati
- The basis for the software used in this paper is the Simple Genetic Algorithm (SGA) program developed by
| Goldberg’. mmmmmmaﬁmzw386cMWuMa80387mame. The SGA program allows
= theusatodeﬁmmevaluesfcrpopuhﬁonsiu.muimumnmnbcrofgemraﬁons,pmbabiﬁtydaossovu,mdprobabiﬁty
— of mutation. The values uscd for these parameters are given in Table II. Since run time became extremely long, population
- siuwukeputuehﬁvelysmunumha.lm.Thisdidlndtodifﬁculﬁeswhenhrgastringdmmuseduﬂwiﬂbe
. discussed in the following chapter.
=« 3.3 Modification of String Structure
E msmwommammbmmwmumm-mumm While this
E me(hodcmndakobeMmmwmmameﬁmymmwwp.ammuﬁwmmdmcm.

remn
r



[

il
b

E ¢ .
o
First, the number of alleles was determined from the size of the rule set plus the number of fuzzy sets used to partition the
- c T Table II Parameters Used in SGA Program
- 0 -
- spaces of the input variables. Forthewtcemaingprobiem.theshapuofthetriangleswhichfomedmeoumtspacewm
B fixed, while the input variables, x-location and velocity, were each partitioned using five triangles: negative medium ,
. negative small (NS), zero (ZE), positive small (PS), and positive medium (PM). The rule set, then, contained twenty-five (5
- x 5) rules to account for every possible combination of input fuzzy sets. The rules are of the form, IF(x is {NM, NS, ZE,
PS, or PM}) and (v is {NM, NS, ZE, PS, or PM)) THEN {output}, where output is one of the fuzzy sets used to partition
B the output space. The two input spaces use a total of ten triangles, so the string to represent a given rule set and membership
S function combination would have thirty-five alleles (25 + 10). Note that the term alleles is used instead of bits, because the
f value of each allele contains either the output fuzzy set to be used (for the first twenty-five alleles where NM=1, NS=2, etc.)
.. onhevaluewhichwillbeconvettedtoﬂ\elengﬂlofthebaseofﬂieu'iangluwhichmke\xpmemputspaces(mclastwn
E alleles). The calculation of the triangle bases from the allele values (1-5) were done as follows:
1. Subtract 1 from the allele value (making the range now 0-4).
= 2. Subtractthisvaluefmml(whichismedistanccbetweentbepuksofuchuimgle).
= 3. Double this value and divide by 10, giving the base length for each particular triangle. This value can be anywhere
from 1.2m to 2.0m,
= Thus we are able to incorporate the two main ingredients of a fuzzy controller, the rule set and the membership functions,
ha into a single string which GA will seek 10 optimize. This is shown in the following example.
%%‘ String: 14321524321245143122113454525234124
= String: |1432152432124514312211345| 45252 | 34124 |
| rule set | x-location | velocity |
. | | locations | locations |
. —

x-location

{

iy
~




t ¢l

IH! |
(-

i
G

(=]

o~

o

g

L

e

L

o

il
Ao

am=T

{4

{

NMembarehip
. CEEC.5E

Manberuhip
.ELEE.-EEE

T O wTETTTE by 1 g ae Y R Y YV
Tlomstion Valsslty

Figure § Example of String-Fuzzy Controller Conversion
4 5 TION

4.1 Initial Conditions

To find a satisfactory controller, the controller must be able to operate over the entire range of the input spaces. For
GA to properly design fuzzy controllers, this fact must be integrated into the function evaluation. This was done by using
multiple initial conditions in the evaluation of each member of the population. If a single initial condition were used, for
example x, = 0.7m and v, = -0.5m/s, then GA would find a controller which would work well around that particular point
but may fail elsewhere. This makes the choice of initial conditions an important consideration. The points must be chosen
tosufﬁcimﬂyoovud\einputspaces.butatthesanwtimc.!hemminiﬁaloonditionsused.thcmomtimemepmgramlakcs
to run. These initial conditions are listed in Table MI.

42 Fitness Function

The fitness function proved 1o be the most challenging aspect of applying GA to fuzzy controller design. As stated
carlier, the process finally was divided into two stages, an evolution stage and a refinement stage. In the evolution stage, GA
was used to find satisfactory controllers, while in the refinement stage, GA used the previously developed controllers and
attempted to minimize the amount of time needed to bring both x-location and velocity to zero.

Table I Initial Conditions

(:2,:2) (-:2.2) 0.0) 2.-2) (2.2)
(22 (-22) (1-D (LD 00 (1.-D) (L1) (2-2) 22)

(-2,:2) (-2.0) (-2,2) (4/3,4/3) (4/3.43) (-2/3,:23)
(-23273) (0.0) (23,-23) (2/3.23) (43,4/3) (413.473)
(2,-2) (20) 2.2)

For the first stage, which lasted through generation 30, the fitness function rewarded a member of the population
acco:dingtohowwellitametothetolamvalue.to.s for both x-location and velocity. If the controller succeeded in
bﬁngingxmdeimintbetdmce.itwgivenaﬁmesuelﬁvebmeﬁmcitwoh If the controller "timed out,” it was
eitherslighdypmishedwimnnegaﬁveﬁmorsﬁghuynwxdeddependingonx-bcuionmdvelocity. If the controller
diverged, the fitness was given a larger negative value. The first fitness function is shown below.



c

s e
<

e

fr

(e

(

B

ey "
b

mu,

B

]

| 3]
-—

if (Jx| < 0.5) and (|velocity| < 0.5) then
fitness = 8 * 175 / time
else if (time = 175) then
if (|x] < 1.0) and (|velocity| < 1.0) then
fitness = 3.5 / sqrt( x* + velocity’ )
else
finess = -1
else
~ fitness = -7

'I'heuotalﬁtneeswasmengivenbythemdtheﬁmmudauminedforexhiniﬁalcowﬁon. Through the use
of this reinforcement/reward scheme, GA was able to develop controllers which could solve all the initial conditions.

The second stage, from generation 31 to generation 100, was based almost completely on time. If the controller
reachedmetolmnoevalueshwasrewuﬂedaecordingmhowshonaﬁmeitmok. If the controller "timed out,” it was
punished according to how much it missed the tolerance values, and if the controller diverged, it was given a very large
negative fitness which would probably ensure its failure to continue on to the next generation. This fitness function was given
as:

if (|x| < 0.5) and (|velocity| < 0.5) then
fimess = 3 * (175 - time)
else if (time = 175) then
fimess = 42 * sqrt( x* + velocity® )
else
finess = -300

4.3 333 Controller

The 333 controller was the simplest controller to design. It consisted of only 9 rules, and the number of triangle
base locations to be determined was 6, yielding a total string length of 13. The controller determined by GA is shown in
Figure 6.

X

N ZE P

N 3 3 1

velocity | ZE | 3 2 1

P 3 1 1

4 v |

¥ ) 1V ]

(33 12

14 34

“ o~

[V ] o4

[ V] [ V]

[ 1] [ ']
L o 1 400" B G A Y Y Y T va T a0

Slomiha Vlnaity
Figure ¢ 333 Coatroller



c’

=
=}

iU LI R
~

rr

4.4 555 Controller

The 555 controller used 25 rules and needed 10 allcles to determine the location of the bases of the fuzzy sets
covering the input spaces. Wilhnonlminglengthoﬂs.meﬁmindicaﬁonthubeuaperfonmncecmﬂdbeobuinedwith
larger population sizes became apparent. Comiduingthuexhdkkwuldhaveavﬂmbcmlmds.uﬁsmumm
ifabinaryminghadbeenmed.Bbiuwmndbenecesmmmpmemmewnewmﬂom This would yield a string
length of 105. A population of 100 cannot begin with enough diversity to ensure that the search space will be sufficiently
covered to enable GA to find the optimal solution. Evenwithnehﬁvelysmaﬂpopuhﬁonsize.ﬂwmntimetook between
two and Ooe-half to three hours. Howevu.ﬂnpufonmnceofmeconmlkrdidmdimmaGAmﬁndingam-opﬁmd
controller. Figure 7 shows the resultant best controller determined by GA.

X
NMINS | ZE| PS | PM
NMY| S 4 4 | 4 2
NS 5 5 5 1 1
velocity | ZE 5 5 3 1 1
PS 5 5 1 1 1
PM 4 2 2 2 1
is |V
4 u
12 a
1 il.
“ [V ]
“ fu
“ “
[ ] [}
L1 o iy S TR S Y I Y Y L g s e RV
Yemtha Vimiy
Figure 7 555 Controller

4.5 777 Controller

The final controller designed was the 777 controller. This controller took the most computer time to design because
of the long string length (63 alleles) and the large number of initial conditions (17). Run times took between seven and cight
hours. 'IhebestpufmningoonuolluduignedbyGAissbowninFigm&

4.6 Comparison of Cart Conollers

input space. Forwpoinnhﬁex-locaﬁonspaceandwpoinuinthevdocitywe.mhykbnwonempohn.
Whilemeabiﬁtyohconmlhtoui:fyallmeaepoimsdoesnotneceuﬂygwmteeinsubility(sinceitonlyukuoue
mum:mW).Mdﬂmmmofcmﬁmmmm While examining each
point.'nwuadmpleukwahoommenumberofﬁlnemmedmhinunthuepoinbwih‘mdlelolenncenlnu.
and these numbers are given in Table IV. Mnmwnmmwhmwmsssmmummu



r
-

S
membership functions fixed. GA was used to design only a rule set, with the membership furiction being done by hand. This
controller, shown in Figure 9, was created for comparison purposes to illustrate the importance of membership function
- ( selection. As Table IV shows all the controllers were able to successfully bring the system within the tolerance values.
X
= NL{NM]Ns|ZE|]PS |[PM|PL
( _ NL | 7 5 3 7 7 1 2
= NM| 7 6 6 7 3 2 1
) NS | 7 6 7 7 1 1 1
= velocity | ZE} 7 | 5 | 7 LS 1 | 212
¢ ps| 6] 6l 6] 1 1 1 }41}1
= ml 66l 6| 111 ]6]01
PL 6 5 1 1 S 2 1
= )
1% ] s
}; u “
(= 12 13
_ i 1 1
= “ “
[ == ]u [T ]
4 “
| E .. “
I 3
, & Rh e g i R TR T Y Y L o 1 g T Y ST O Y I
B
=
.
Figure 8 777 Controller
‘ % Table IV Comparison of Cart Controllers
No. of Initial Conditions
:Z Time Steps Required
= Avg. No. of Time Steps
i ig % Difference w/555 Controller

ol

7
Ey
E:




.

(

=

)

il

en

w

e

mr

e

o

Ll audd

Table TV shows that the best performance, on average, came from the 555 controller. The 333 controller, while being
the simplest, did not havé the flexibility to produce fast response times. On the other hand the 777 controller had too much
flexibility and became bogged down in the number of rule evaluations required for cach force calculation. Finally, note that
while the 555 controller with the fixed membership function was able to bring the cart to equilibrium for all points, its
performance was clearly inferior, needing almost 1/3 longer than the GA designed rule set and membership function
combination, indicating the importance of proper membership function design.

X

- nM|Ns | zE | ps [ PM

NM 5 5 5 3 2

NS 5 5 5 1 1

velocity | ZE 5 5 3 1 1

PS 5 5 1 1 1

PM 5 1 4 2 1
14 7]
14 v
12 13
l ‘.
(7] “
(1] “
“ “w
(Y] “

L R Y S Y oo a1 S VR S Y I
Yuleally

Figure 9 555 Controller w/ Fixed Membership Functions
. CONCLUSION

This paper clearly shows the potential for using genetic algorithms to solve optimization problems. The ability of
fuzzy logic controllers to provide control where more conventional methods become too complex has also been shown by
researchers. This work has shown these two, fairly new, methods can be used to together to form controllers without the
previously needed human expert. This methodology allows the complete design of both major components of fuzzy
controllers, the rule sets and membership functions, leading to high performing controllers which are completely computer
designed. We have shown three different controllers for the cart problem, each of which was able to bring the cart to
equilibrium over the entire ranges of the input spaces. While these results are encouraging, more work must be done on
refining the process. First, more powerful and faster computers will allow the use of larger population sizes, and, therefore,
greater diversity. Work will be done to examine the development of a robust coatroller, where the parameters in the equations
ofmotionmmlongerﬁxedmaspeciﬁcvalne.butcaninst&dbeanngeofvalues. Also, the need to ensure the
performanceofd\econu'ollerwhenfmmsoccurintbemlcsetsbouldbeinvuﬁgatedwseeifthiswouldalwme
configuration of the rule set. Fmaﬂy.eonmllmfmwupmbhmubuldbedevebpedwsbowﬂweﬁwﬁvemsofmis
method.

6. ACKNOWLEDGMENTS

Thiswotkismppmedbymtsﬁumﬂawyweﬂlnc.mdumtmmbumandmeNASACenterforRmch
Excellence at N.C. A&T State University under grant sumber NAGW-2924. The authors wish 0 thank them for their



r;w |
Wil

{1300

rnr

R

A

B3

e

o e

| A G

pov
i

HE

&\ l!w"\'m 'F "

Pooetr

A

T
—~

financial support which made this work possible.

10.

11.

7. REFERENCES

Thrift, P., "Fuzzy Logic Synthesis with Genetic Algorithms,” Proceedings of the Fourth Intemnational Conference on
Genetic Algorithms, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1991, pp.509-513.

Holland, J.H., Adaptation in Natural and Artificial Systems, The University of Michigan, Ann Arbor, M1, 1975.
Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Leamning, Addison-Wesley, MA, 1989.
Holland, J.H., "Schemata and intrinsically Parallel Adaptation,” Proceedings of the NSF Workshop on Leaming
System Theory and Application, Gainsville, FL, University of Florida Press, 1975, pp.43-46.

Kosko, B., Neural Networks and Fuzzy Systems: A ical Systems A h hine Intelligence, Prentice
Hall, Englewood Cliffs, NJ, 1992.

Jain, R., "Fuzzyism and Real World Problems,” Fuzzy Sets: Theory and Applications to Policy Analysis and
Information Systems, Wang, P.P, and Chang, S.K. (Eds.), Plenum Press, New York, NY, 1980.

Leung, Y., Spatial Analysis and Planning Under Imprecision, Elsevier Science Publishers B.V., New York, NY,

1988.
Karr, CL., "Design of an Adaptive Fuzzy Logic Controller Using a Genetic Algorithm,” Proceedings of the Fourth

International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1991, pp.450-
457.

Krishnakumar, K., "Microgenetic Algorithms for Stationary and Nonstationary Function Optimization,” SPIE
Proceedings on Intelligent Control and Adaptive Systems, Vol. 1196, pp.289-296, November, 1989.

Procyk, T.J., and Mamdani, E.H., "A Linguistic Self-Organizing Process Controller,” Automatica, Vol. 15, No.1,
pp.15-30, 1979.

Karr, C., "Genetic Algorithms for Fuzzy Controllers,”, Al Expert, February 1991, PP.26-33.



